Optica Open
Browse
arXiv.svg (5.58 kB)

Optical funnel to guide and focus virus particles for X-ray laser imaging

Download (5.58 kB)
preprint
posted on 2023-01-11, 21:58 authored by Salah Awel, Sebastian Lavin-Varela, Nils Roth, Daniel A. Horke, Andrei V. Rode, Richard A. Kirian, Jochen Küpper, Henry N. Chapman
The need for precise manipulation of nanoparticles in gaseous or near-vacuum environments is encountered in many studies that include aerosol morphology, nanodroplet physics, nanoscale optomechanics, and biomolecular physics. Photophoretic forces, whereby momentum exchange between a particle and surrounding gas is induced with optical light, were recently shown to be a robust means of trapping and manipulating nanoparticles in air. We previously proposed a photophoretic "optical funnel" concept for the delivery of bioparticles to the focus of an x-ray free-electron laser (XFEL) beam for femtosecond x-ray diffractive imaging. Here, we describe the formation of a high-aspect-ratio optical funnel and provide a first experimental demonstration of this concept by transversely compressing and concentrating a high-speed beam of aerosolized viruses by a factor of three in a low-pressure environment. These results pave the way toward improved sample delivery efficiency for XFEL imaging experiments as well as other forms of imaging and spectroscopy.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC