Optica Open
Browse

Optical nanofiber temperature monitoring via double heterodyne detection

Download (5.58 kB)
preprint
posted on 2023-11-30, 05:22 authored by Paul Anderson, Shreyas Jalnapurkar, Eugene Moiseev, Di Chang, Paul Barclay, Arturo Lezama, Alex Lvovsky
Tapered optical fibers (nanofibers) whose diameters are smaller than the optical wavelength are very fragile and can be easily destroyed if excessively heated by energy dissipated from the transmitted light. We present a technique for monitoring the nanofiber temperature using two-stage heterodyne detection. The phase of the heterodyne output signal is determined by that of the transmitted optical field, which, in turn, depends on the temperature through the refractive index. From the phase data, by numerically solving the heat exchange equations, the temperature distribution along the nanofiber is determined. The technique is applied to the controlled heating of the nanofiber by a laser in order to remove rubidium atoms adsorbed on its surface that substantially degrade its transmission. Almost 90% of the nanofiber's original transmission is recovered.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC