Optica Open
Browse
arXiv.svg (5.58 kB)

Optical properties of dispersive time-dependent materials

Download (5.58 kB)
preprint
posted on 2023-01-10, 03:24 authored by Jamison Sloan, Nicholas Rivera, John D Joannopoulos, Marin Soljačić
Time-varying optical materials have attracted recent interest for their potential to enable frequency conversion, nonreciprocal physics, photonic time-crystals, and more. However, the description of time-varying materials has been primarily limited to regimes where material resonances (i.e., dispersion) can be neglected. In this work, we describe how the optics of these dispersive time-varying materials emerges from microscopic quantum mechanical models of time-driven systems. Our results are based on a framework for describing the optics of dispersive time-varying materials through quantum mechanical linear response theory. Importantly, we clarify how response functions for time-varying materials are connected to energy transfer. We provide three examples of our framework applied to systems which can be used to model a wide variety of experiments: few level models that can describe atoms, spins, or superconducting qubits, oscillator models which can describe the strong response of polar insulators, and strongly driven atom models which can describe the highly nonperturbative optical response of materials undergoing high harmonic generation. We anticipate that our results will be broadly applicable to electromagnetic phenomena in strongly time-varying systems.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC