Optica Open
Browse

Optical repumping of resonantly excited quantum emitters in hexagonal boron nitride

Download (5.58 kB)
preprint
posted on 2023-11-30, 20:33 authored by Simon J. U. White, Ngoc My Hanh Duong, Alexander S. Solntsev, Je-Hyung Kim, Mehran Kianinia, Igor Aharonovich
Resonant excitation of solid-state quantum emitters enables coherent control of quantum states and generation of coherent single photons, which are required for scalable quantum photonics applications. However, these systems can often decay to one or more intermediate dark states or spectrally jump, resulting in the lack of photons on resonance. Here, we present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN). Utilizing a two-laser repumping scheme, we achieve optically stable resonance fluorescence of hBN emitters and an overall increase of ON time by an order of magnitude compared to only resonant excitation. Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC