Optica Open
Browse
- No file added yet -

Optical simulation of atomic decay enhancement and suppression

Download (5.58 kB)
preprint
posted on 2023-11-30, 20:12 authored by B. Jaramillo-Ávila, F. H. Maldonado-Villamizar, B. M. Rodríguez-Lara
We discuss the decay of a two-level system into an engineered reservoir of coupled harmonic oscillators in the single-excitation manifold and propose its optical simulation with an homogeneous chain of coupled waveguides where individual elements couple to an external waveguide. We use two approaches to study the decay of the optical analogue for the probability amplitude of the two-level system being in the excited state. A Born approximation allows us to provide analytic closed-form amplitudes valid for small propagation distances. A Fourier-Laplace approach allows us to estimate an effective decay rate valid for long propagation distances. In general, our two analytic approximations match our numerical simulations using coupled mode theory and show non-Markovian decay into the engineered reservoir. In particular, we focus on two examples that provide enhancement or suppression of the decay decay rate using flat-top or Gaussian coupling distributions.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC