Optica Open
Browse

Optical super-resolution sensing of a trapped ion's wave packet size

Download (5.58 kB)
preprint
posted on 2023-01-11, 22:32 authored by Martin Drechsler, Sebastian Wolf, Christian T. Schmiegelow, Ferdinand Schmidt-Kaler
We demonstrate super-resolution optical sensing of the size of the wave packet of a single trapped ion. Our method extends the well known ground state depletion (GSD) technique to the coherent regime. Here, we use a hollow beam to strongly saturate a coherently driven dipole-forbidden transition around a sub-diffraction limited area at its center and observe state dependent fluorescence. By spatially scanning this laser beam over a single trapped $^{40}\mathrm{Ca}^+$ ion, we are able to measure the wave packet sizes of cooled ions. Using a depletion beam waist of $4.2(1)\,\mu$m we reach a spatial resolution which allows us to determine a wave packet size of $39(9)\,$nm for a near ground state cooled ion. This value matches an independently deduced value of $32(2)\,$nm, calculated from resolved sideband spectroscopy measurements. Finally, we discuss the ultimate resolution limits of our adapted GSD imaging technique in view of applications to direct quantum wave packet imaging.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC