Optica Open
Browse

Optical switching beyond a million cycles of low-loss phase change material Sb$_2$Se$_3$

Download (5.58 kB)
preprint
posted on 2023-10-18, 16:00 authored by Daniel Lawson, Sophie Blundell, Martin Ebert, Otto L. Muskens, Ioannis Zeimpekis
The development of the next generation of optical phase change technologies for integrated photonic and free-space platforms relies on the availability of materials that can be switched repeatedly over large volumes and with low optical losses. In recent years, the antimony-based chalcogenide phase-change material Sb$_2$Se$_3$ has been identified as particularly promising for a number of applications owing to good optical transparency in the near-infrared part of the spectrum and a high refractive index close to silicon. The crystallization temperature of Sb$_2$Se$_3$ of around 460 K allows switching to be achieved at moderate energies using optical or electrical control signals while providing sufficient data retention time for non-volatile storage. Here, we investigate the parameter space for optical switching of films of Sb$_2$Se$_3$ for a range of film thicknesses relevant for optical applications. By identifying optimal switching conditions, we demonstrate endurance of up to 10$^7$ cycles at reversible switching rates of 20 kHz. Our work demonstrates that the combination of intrinsic film parameters with pumping conditions is particularly critical for achieving high endurance in optical phase change applications.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC