Optica Open
Browse
- No file added yet -

Optimal displacement detection of arbitrarily-shaped levitated dielectric objects using optical radiation

Download (5.58 kB)
preprint
posted on 2024-09-05, 16:00 authored by Shaun Laing, Shelby Klomp, George Winstone, Alexey Grinin, Andrew Dana, Zhiyuan Wang, Kevin Seca Widyatmodjo, James Bateman, Andrew A. Geraci
Optically-levitated dielectric objects are promising for precision force, acceleration, torque, and rotation sensing due to their extreme environmental decoupling. While many levitated opto-mechanics experiments employ spherical objects, for some applications non-spherical geometries offer advantages. For example, rod-shaped or dumbbell shaped particles have been demonstrated for torque and rotation sensing and high aspect ratio plate-like particles can exhibit reduced photon recoil heating and may be useful for high-frequency gravitational wave detection or as high bandwidth accelerometers. To achieve optimal sensitivity, cooling, and quantum control in these systems, it is beneficial to achieve optimal displacement detection using scattered light. We describe and numerically implement a method based on Fisher information that is applicable to suspended particles of arbitrary geometry. We demonstrate the agreement between our method and prior methods employed for spherical particles, both in the Rayleigh and Lorentz-Mie regimes. As practical examples we analyze the optical detection limits of an optically-levitated high-aspect-ratio disc-like dielectric object and a rod-shaped object for configurations recently realized in experimental work.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC