Optica Open
Browse

Optimizing the signal-to-noise ratio of biphoton distribution measurements

Download (5.58 kB)
preprint
posted on 2023-11-30, 05:12 authored by Matthew Reichert, Hugo Defienne, Jason W. Fleischer
Single-photon-sensitive cameras can now be used as massively parallel coincidence counters for entangled photon pairs. This enables measurement of biphoton joint probability distributions with orders-of-magnitude greater dimensionality and faster acquisition speeds than traditional raster scanning of point detectors; to date, however, there has been no general formula available to optimize data collection. Here we analyze the dependence of such measurements on count rate, detector noise properties, and threshold levels. We derive expressions for the biphoton joint probability distribution and its signal-to-noise ratio (SNR), valid beyond the low-count regime up to detector saturation. The analysis gives operating parameters for global optimum SNR that may be specified prior to measurement. We find excellent agreement with experimental measurements within the range of validity, and discuss discrepancies with the theoretical model for high thresholds. This work enables optimized measurement of the biphoton joint probability distribution in high-dimensional joint Hilbert spaces.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC