Optica Open
Browse

Optomechanical Kerker effect

Download (5.58 kB)
preprint
posted on 2023-11-30, 06:01 authored by A. V. Poshakinskiy, A. N. Poddubny
Tunable directional scattering is of paramount importance for operation of antennas, routing of light, and design of topologically protected optical states. For visible light scattered on a nanoparticle the directionality could be provided by the Kerker effect, exploiting the interference of electric and magnetic dipole emission patterns. However, magnetic optical resonances in small sub-100-nm particles are relativistically weak. Here, we predict inelastic scattering with the unexpectedly strong tunable directivity up to 5.25 driven by a trembling of small particle without any magnetic resonance. The proposed optomechanical Kerker effect originates from the vibration-induced multipole conversion. We also put forward an optomechanical spin Hall effect, the inelastic polarization-dependent directional scattering. Our results uncover an intrinsically multipolar nature of the interaction between light and mechanical motion. They apply to a variety of systems from cold atoms to two-dimensional materials to superconducting qubits and can be instructive to engineer chiral optomechanical coupling.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC