posted on 2023-01-12, 14:00authored byAnne Louchet-Chauvet, Pierre Verlot, Jean-Philippe Poizat, Thierry Chanelière
We investigate a novel hybrid system composed of an ensemble of room temperature rare-earth ions embedded in a bulk crystal, intrinsically coupled to internal strain via the surrounding crystal field. We evidence the generation of a mechanical response under resonant light excitation. Thanks to an ultra-sensitive time- and space-resolved photodeflection setup, we interpret this motion as the sum of two resonant optomechanical backaction processes: a conservative, piezoscopic process induced by the optical excitation of a well-defined electronic configuration, and a dissipative, non-radiative photothermal process related to the phonons generated throughout the atomic population relaxation. Parasitic heating processes, namely off-resonant dissipative contributions, are absent. This work demonstrates an unprecedented level of control of the conservative and dissipative relative parts of the optomechanical backaction, confirming the potential of rare-earth-based systems as promising hybrid mechanical systems.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.