Optica Open
Browse
- No file added yet -

Organic room-temperature polariton condensate in a higher-order topological lattice

Download (5.58 kB)
preprint
posted on 2024-01-16, 17:00 authored by Christoph Bennenhei, Hangyong Shan, Marti Struve, Nils Kunte, Falk Eilenberger, Jürgen Ohmer, Utz Fischer, Stefan Schumacher, Xuekai Ma, Christian Schneider, Martin Esmann
Organic molecule exciton-polaritons in photonic lattices are a versatile platform to emulate unconventional phases of matter at ambient conditions, including protected interface modes in topological insulators. Here, we investigate bosonic condensation in the most prototypical higher-order topological lattice: a 2D-version of the Su-Schrieffer-Heeger (SSH) model, supporting both 0D and 1D topological modes. We study fluorescent protein-filled, structured microcavities defining a staggered photonic trapping potential and observe the resulting first- and higher-order topologically protected modes via spatially resolved photoluminescence spectroscopy. We account for the spatial mode patterns by tight-binding calculations and theoretically characterize the topological invariants of the lattice. Under strong optical pumping, we observe bosonic condensation into the topological modes. Via interferometric measurements, we map the spatial first-order coherence in the protected 1D modes extending over 10 microns. Our findings pave the way towards organic on-chip polaritonics using higher-order topology as a tool for the generation of robustly confined polaritonic lasing states.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC