Optica Open
Browse

Origin of nonlinear photocurrents in chiral multifold semimetal CoSi unveiled by terahertz emission spectroscopy

Download (5.58 kB)
preprint
posted on 2024-09-11, 12:57 authored by Yao-Jui Chan, Syed Mohammed Faizanuddin, Raju Kalaivanan, Sankar Raman, Hsin Lin, Uddipta Kar, Akhilesh Kr. Singh, Wei-Li Lee, Ranganayakulu K. Vankayala, Min-Nan Ou, Yu-Chieh Wen
Spectroscopic identification of distinct nonlinear photocurrents unveils quantum geometric properties of electron wavefunctions and the momentum-space topological structures. This is especially interesting, but still puzzling, for chiral topological semimetals with possibilities of hosting giant quantized circular photogalvanic effect. Here we report a comprehensive terahertz (THz) emission spectroscopic analysis of nonlinear photoconductivity of chiral multifold CoSi at 0.26 ~ 1 eV. We find a large linear shift conductivity (17 {\mu}A/V2), and confirm a giant injection conductivity (167 {\mu}A/V2) as a consequence of strongly interfered non-quantized contributions from the vicinity of multifold nodes with opposite chiralities. The bulk injection current excited by the pump field with a complex wavevector is shown to carry both longitudinal and transverse components. Symmetry analyses further unveil weak nonlocal photon drag effect in addition to the photogalvanic effect. This work not only highlights chiral transition metal monosilicides for mid-infrared photovoltaic applications via various nonlinear optical channels, but also consolidates the THz spectroscopy for quantitative photovoltaic research.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC