Optica Open
Browse

Overcoming experimental obstacles in two-dimensional spectroscopy of a single molecule

Download (5.58 kB)
preprint
posted on 2025-02-08, 17:00 authored by Sanchayeeta Jana, Simon Durst, Lucas Ludwig, Markus Lippitz
Two-dimensional electronic spectroscopy provides information on coupling and energy transfer between excited states on ultrafast timescales. Only recently, incoherent fluorescence detection has made it possible to combine this method with single-molecule optical spectroscopy to reach the ultimate limit of sensitivity. The main obstacle has been the low number of photons detected due to limited photostability. Here we discuss the key experimental choices that allowed us to overcome these obstacles: broadband acousto-optic modulation, accurate phase-locked loops, photon-counting lock-in detection, delay stage linearization, and detector dead-time compensation. We demonstrate how the acquired photon stream data can be used to post-select detection events according to specific criteria.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC