Optica Open
Browse

Overcoming stress limitations in SiN nonlinear photonics via a bilayer waveguide

Download (5.58 kB)
preprint
posted on 2024-09-17, 16:00 authored by Karl J. McNulty, Shriddha Chaitanya, Swarnava Sanyal, Andres Gil-Molina, Mateus Corato-Zanarella, Yoshitomo Okawachi, Alexander L. Gaeta, Michal Lipson
Silicon nitride (SiN) formed via low pressure chemical vapor deposition (LPCVD) is an ideal material platform for on-chip nonlinear photonics owing to its low propagation loss and competitive nonlinear index. Despite this, LPCVD SiN is restricted in its scalability due to the film stress when high thicknesses, required for nonlinear dispersion engineering, are deposited. This stress in turn leads to film cracking and makes integrating such films in silicon foundries challenging. To overcome this limitation, we propose a bilayer waveguide scheme comprised of a thin LPCVD SiN layer underneath a low-stress and low-index PECVD SiN layer. We show group velocity dispersion tuning at 1550nm without concern for filmcracking while enabling low loss resonators with intrinsic quality factors above 1 million. Finally, we demonstrate a locked, normal dispersion Kerr frequency comb with our bilayer waveguide resonators spanning 120nm in the c-band with an on-chip pump power of 350mW.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC