Optica Open
arXiv.svg (5.58 kB)
Download file

Peierls-Nabarro barrier effect in nonlinear Floquet topological insulators

Download (5.58 kB)
posted on 2023-01-11, 23:02 authored by Mark J. Ablowitz, Justin T. Cole, Pipi Hu, Peter Rosenthal
The Peierls-Nabarro barrier is a discrete effect that frequently occurs in discrete nonlinear systems. A signature of the barrier is the slowing and eventual stopping of discrete solitary waves. This work examines intense electromagnetic waves propagating through a periodic honeycomb lattice of helically-driven waveguides, which serves as a paradigmatic Floquet topological insulator. Here it is shown that discrete topologically protected edge modes do not suffer from the typical slowdown associated with the Peierls-Nabarro barrier. Instead, as a result of their topological nature, the modes always move forward and redistribute their energy: a narrow (discrete) mode transforms into a wide effectively continuous mode. On the other hand, a discrete edge mode that is not topologically protected does eventually slow down and stop propagating. Topological modes that are initially narrow modes naturally tend to wide envelope states that are described by a generalized nonlinear Schrodinger equation. These results provide insight into the nature of nonlinear topological insulators and their application.



This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics