Optica Open
Browse
arXiv.svg (5.58 kB)

Perfect optical absorption-enhanced magneto-optic Kerr effect microscopy

Download (5.58 kB)
preprint
posted on 2023-11-30, 19:00 authored by Dongha Kim, Young-Wan Oh, Jong-Uk Kim, Jonghwa Shin, Kab-Jin Kim, Byong-Guk Park, Min-Kyo Seo
Magnetic and spintronic media have offered fundamental scientific subjects and technological applications. Magneto-optic Kerr effect (MOKE) microscopy provides the most accessible platform to study the dynamics of spins, magnetic quasi-particles, and domain walls. However, in the research of nanoscale spin textures and state-of-the-art spintronic devices, optical techniques are generally restricted by the extremely weak magneto-optical activity and diffraction limit. Highly sophisticated, expensive electron microscopy and scanning probe methods thus have come to the forefront. Here, we show that perfect optical absorption (POA) dramatically improves the performance and functionality of MOKE microscopy. For 1-nm-thin Co film, we demonstrate a Kerr amplitude as large as 20 degree and magnetic domain imaging visibility of 0.47. Especially, POA-enhanced MOKE microscopy enables real-time detection and statistical analysis of sub-wavelength magnetic domain reversals. Furthermore, we exploit enhanced magneto-optic birefringence and demonstrate analyser-free MOKE microscopy. The POA technique is promising for optical investigations and applications of nanomagnetic systems.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC