Optica Open
Browse
arXiv.svg (5.58 kB)

Phased-Locked Two-Color Single Soliton Microcombs in Dispersion-Engineered Si3N4 Resonators

Download (5.58 kB)
preprint
posted on 2023-11-30, 05:27 authored by Gregory Moille, Qing Li, Sangsik Kim, Daron Westly, Kartik Srinivasan
We propose and theoretically investigate a dispersion-engineered Si3N4 microring resonator, based on a cross-section containing a partially-etched trench, that supports phase-locked, two-color soliton microcomb states. These soliton states consist of a single circulating intracavity pulse with a modulated envelope that sits on a continuous wave background. Such temporal waveforms produce a frequency comb whose spectrum is spread over two widely-spaced spectral windows, each exhibiting a squared hyperbolic secant envelope, with the two windows phase-locked to each other via Cherenkov radiation. The first spectral window is centered around the 1550 nm pump, while the second spectral window is tailored based on straightforward geometric control, and can be centered as short as 750 nm and as long as 3000 nm. We numerically analyze the robustness of the design to parameter variation, and consider its implications to self-referencing and visible wavelength comb generation.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC