Optica Open
Browse

Phonon-laser sensing in a hetero optomechanical crystal cavity

Download (5.58 kB)
preprint
posted on 2023-11-30, 18:38 authored by Kaiyu Cui, Zhilei Huang, Qiancheng Xu, Fei Pan, Jian Xiong, Xue Feng, Fang Liu, Wei Zhang, Yidong Huang
Micro- and nanomechanical resonators have emerged as promising platforms for sensing a broad range of physical properties such as mass, force, torque, magnetic field, and acceleration. The sensing performance relies critically on the motional mass, the mechanical frequency, and the linewidth of the mechanical resonator. Here, we demonstrate a hetero optomechanical crystal (OMC) cavity based on a silicon nanobeam structure. The cavity supports phonon lasing in a fundamental mechanical mode with a frequency of 5.91 GHz, an effective mass of 116 fg, and a mechanical linewidth narrowing from 3.3 MHz to 5.2 kHz, while the optomechanical coupling rate of is as high as 1.9 MHz. With this phonon laser, the on-chip sensing with a resolution of $\delta$$\lambda$/$\lambda$ = 1.0*10-8 can be attained, which is at least two orders of magnitude larger than that obtained with conventional silicon-based sensors. The use of a silicon-based hetero OMC cavity that harnesses phonon lasing could pave the way towards exciting, high-precision sensors that lend themselves to silicon monolithic integration and offer unprecedented sensitivity for broad physical sensing applications.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC