Optica Open
Browse

Phonon Interferometry for Measuring Quantum Decoherence

Download (5.58 kB)
preprint
posted on 2023-11-30, 05:19 authored by Matthew J. Weaver, David Newsom, Fernando Luna, Wolfgang Löffler, Dirk Bouwmeester
Experimental observation of the decoherence of macroscopic objects is of fundamental importance to the study of quantum collapse models and the quantum to classical transition. Optomechanics is a promising field for the study of such models because of its fine control and readout of mechanical motion. Nevertheless, it is challenging to monitor a mechanical superposition state for long enough to investigate this transition. We present a scheme for entangling two mechanical resonators in spatial superposition states such that all quantum information is stored in the mechanical resonators. The scheme is general and applies to any optomechanical system with multiple mechanical modes. By analytic and numeric modeling, we show that the scheme is resilient to experimental imperfections such as incomplete pre-cooling, faulty postselection and inefficient optomechanical coupling. This proposed procedure overcomes limitations of previously proposed schemes that have so far hindered the study of macroscopic quantum dynamics.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC