Optica Open
Browse

Photoacoustic Image Formation Based on Sparse Regularization of Minimum Variance Beamformer

Download (5.58 kB)
preprint
posted on 2023-11-30, 05:15 authored by Roya Paridar, Moein Mozaffarzadeh, Mohammad Mehrmohammadi, Mahdi Orooji
Delay-and-Sum (DAS) is the most common algorithm used in photoacoustic (PA) image formation. However, this algorithm results in a reconstructed image with a wide mainlobe and high level of sidelobes. Minimum variance (MV), as an adaptive beamformer, overcomes these limitations and improves the image resolution and contrast. In this paper, a novel algorithm, named modified-sparse-MV (MS-MV) is proposed in which a L1-norm constraint is added to the MV minimization problem after some modifications, in order to suppress the sidelobes more efficiently, compared to MV. The added constraint can be interpreted as the sparsity of the output of the MV beamformed signals. Since the final minimization problem is convex, it can be solved efficiently using a simple iterative algorithm. The numerical results show that the proposed method, MS-MV beamformer, improves the signal-to-noise (SNR) about 19.48 dB, in average, compared to MV. Also, the experimental results, using a wire-target phantom, show that MS-MV leads to SNR improvement of about 2.64 dB in comparison with the MV.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC