Optica Open
Browse

Photoinduced Magnetic Force Microscopy: Enabling Direct and Exclusive Detection of Optical Magnetism

Download (5.58 kB)
preprint
posted on 2023-01-11, 23:15 authored by Jinwei Zeng, Mohammad Albooyeh, Mohsen Rajaei, Abid Anjum Sifat, Eric O. Potma, H. Kumar Wickramasinghe, Filippo Capolino
Modern optical nano-elements pursue ever-smaller sizes and individualized functionalities. Those elements that can efficiently manipulate the magnetic field of light boast promising future applications with a great challenge: the magnetic near field is irretrievable from conventional optical far-field characterization. Here we propose photoinduced magnetic force microscopy to directly and exclusively sense the magnetic field of light at the nanoscale. The proposed instrument exploits a magnetic nanoprobe with exclusive magnetic excitation under structured light illumination. The magnetic nanoprobe detects the photoinduced magnetic force, which is defined as the dipolar Lorentz force exerted on the photoinduced magnetic dipole in the nanoprobe. Since the resulting magnetic force is proportional to the incident magnetic field, the measured force reveals the magnetic near-field distribution at the nanoscale. The proposed instrument represents a fundamental step towards comprehensive electric and magnetic near-field detection and/or manipulation in single nano-element optical devices.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC