posted on 2023-04-27, 16:01authored byUnė G. Būtaitė, Christina Sharp, Michael Horodynski, Graham M. Gibson, Miles J. Padgett, Stefan Rotter, Jonathan M. Taylor, David B. Phillips
Optical tweezers enable non-contact trapping of micro-scale objects using light. Despite their widespread use, it is currently not known how tightly it is possible to three-dimensionally trap micro-particles with a given photon budget. Reaching this elusive limit would enable maximally-stiff particle trapping for precision measurements on the nanoscale, and photon-efficient tweezing of light-sensitive objects. Here we solve this problem by customising a trapping light field to suit a specific particle, with the aim of simultaneously optimising trap stiffness in all three dimensions. Initially taking a theoretical approach, we develop an efficient multi-parameter optimisation routine to design bespoke optical traps for a wide range of micro-particles. We show that the confinement volume of micro-spheres held in these sculpted traps can be reduced by one-to-two orders-of-magnitude in comparison to a conventional optical tweezer of the same power. We go on to conduct proof-of-principle experiments, and use a wavefront shaping inspired strategy to suppress the Brownian fluctuations of optically trapped micro-spheres in every direction concurrently, thus demonstrating order-of-magnitude reductions in their confinement volumes. Our work paves the way towards the fundamental limits of optical control over the mesoscopic realm.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.