Optica Open
Browse

Photonic Neural Network Fabricated on Thin Film Lithium Niobate for High-Fidelity and Power-Efficient Matrix Computation

Download (5.58 kB)
preprint
posted on 2024-02-28, 17:01 authored by Yong Zheng, Rongbo Wu, Yuan Ren, Rui Bao, Jian Liu, Yu Ma, Min Wang, Ya Cheng
Photonic neural networks (PNNs) have emerged as a promising platform to address the energy consumption issue that comes with the advancement of artificial intelligence technology, and thin film lithium niobate (TFLN) offers an attractive solution as a material platform mainly for its combined characteristics of low optical loss and large electro-optic (EO) coefficients. Here, we present the first implementation of an EO tunable PNN based on the TFLN platform. Our device features ultra-high fidelity, high computation speed, and exceptional power efficiency. We benchmark the performance of our device with several deep learning missions including in-situ training of Circle and Moons nonlinear datasets classification, Iris flower species recognition, and handwriting digits recognition. Our work paves the way for sustainable up-scaling of high-speed, energy-efficient PNNs.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC