Optica Open
Browse

Photonic antiferromagnetic topological insulator with a single surface Dirac cone

Download (5.58 kB)
preprint
posted on 2025-01-15, 17:00 authored by Fujia Chen, Ning Han, Songyang Pu, Rui Zhao, Li Zhang, Qiaolu Chen, Yuze Hu, Mingyu Tong, Wenhao Li, Junyao Wu, Yudong Ren Xinrui Li, Wenyan Yin, Hongsheng Chen, Rui-Xing Zhang, Yihao Yang
Antiferromagnetism, characterized by magnetic moments aligned in alternating directions with a vanished ensemble average, has garnered renewed interest for its potential applications in spintronics and axion dynamics. The synergy between antiferromagnetism and topology can lead to the emergence of an exotic topological phase unique to certain magnetic order, termed antiferromagnetic topological insulators (AF TIs). A hallmark signature of AF TIs is the presence of a single surface Dirac cone--a feature typically associated with strong three-dimensional (3D) topological insulators--only on certain symmetry-preserving crystal terminations. However, the direct observation of this phenomenon poses a significant challenge. Here, we have theoretically and experimentally discovered a 3D photonic AF TI hosting a single surface Dirac cone protected by the combined symmetry of time reversal and half-lattice translation. Conceptually, our setup can be viewed as a z-directional stack of two-dimensional Chern insulators, with adjacent layers oppositely magnetized to form a 3D type-A AF configuration. By measuring both bulk and surface states, we have directly observed the symmetry-protected gapless single-Dirac-cone surface state, which shows remarkable robustness against random magnetic disorders. Our work constitutes the first realization of photonic AF TIs and photonic analogs of strong topological insulators, opening a new chapter for exploring novel topological photonic devices and phenomena that incorporate additional magnetic degrees of freedom.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC