Optica Open
Browse
arXiv.svg (5.58 kB)

Photonic crystal nanocavity based on a topological corner state

Download (5.58 kB)
preprint
posted on 2023-11-30, 06:47 authored by Yasutomo Ota, Feng Liu, Ryota Katsumi, Katsuyuki Watanabe, Katsunori Wakabayashi, Yasuhiko Arakawa, Satoshi Iwamoto
Topological phonics has emerged as a novel approach to engineer the flow of light and provides unprecedented means for developing diverse photonic elements, including robust optical waveguides immune to structural imperfections. However, the development of nanoscale standing-wave cavities in topological photonics is rather slow, despite its importance when building densely-integrated photonic integrated circuits. In this Letter, we report a photonic crystal nanocavity based on a topological corner state, supported at a 90-degrees-angled rim of a two dimensional photonic crystal. A combination of the bulk-edge and edge-corner correspondences guarantees the presence of the higher-order topological state in a hierarchical manner. We experimentally observed a corner mode that is tightly localized in space while supporting a high Q factor over 2,000, verifying its promise as a nanocavity. These results cast new light on the way to introduce nanocavities in topological photonics platforms.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC