Optica Open
Browse
arXiv.svg (5.58 kB)

Photonic waveguide mode to free-space Gaussian beam extreme mode converter

Download (5.58 kB)
preprint
posted on 2023-11-30, 05:26 authored by Sangsik Kim, Daron A. Westly, Brian J. Roxworthy, Qing Li, Alexander Yulaev, Kartik Srinivasan, Vladimir A. Aksyuk
Integration of photonic chips with atomic, micromechanical, chemical and biological systems can advance science and open many possibilities in chip-scale devices and technology. Compact photonic structures for direct coupling of light between high-index single-mode waveguides and arbitrary free-space modes spanning hundreds of waves in cross-section would eliminate bulky optical components and enable integration of photonics into many new applications requiring wide beams, structured light and centimeter-scale propagation distances with low diffraction-limited losses. Conventional fiber-coupling approaches do not scale well for accurate, low-loss coupling across the extremely large mode scale mismatch ($\approx10^6$ times in modal area). Here we present an extreme mode converter that can transform the photonic waveguide mode to the diffraction-limited, free-space Gaussian beam, with a beam waist of about $160~\mu$m. Using two identical converters, we demonstrate a grating-to-grating coupling that couples the radiating beam back to the chip through a mirror reflection in free-space. Operating at 780~nm for integration with chip-scale atomic vapor cell cavities, our design can be adapted for visible, telecommunication or other wavelengths. Furthermore, other types of beams can be implemented by using the 2-stage expansion approach presented in this paper.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC