Optica Open
Browse

Physical-layer key distribution using synchronous complex dynamics of DBR semiconductor lasers

Download (5.58 kB)
preprint
posted on 2023-11-02, 16:01 authored by Anbang Wang, Yicheng Du, Qingtian Li, Longsheng Wang, Zhiwei Jia, Yuwen Qin, Yuncai Wang
Common-signal-induced synchronization of semiconductor lasers with optical feedback inspired a promising physical key distribution with information-theoretic security and potential in high rate. A significant challenge is the requirement to shorten the synchronization recovery time for increasing key rate without sacrificing operation parameter space for security. Here, open-loop synchronization of wavelength-tunable multi-section distributed Bragg reflector (DBR) lasers is proposed as a solution for physical-layer key distribution. Experiments show that the synchronization is sensitive to two operation parameters, i.e., currents of grating section and phase section. Furthermore, fast wavelength-shift keying synchronization can be achieved by direct modulation on one of the two currents. The synchronization recovery time is shortened by one order of magnitude compared to close-loop synchronization. An experimental implementation is demonstrated with a final key rate of 5.98 Mbit/s over 160 km optical fiber distance. It is thus believed that fast-tunable multi-section semiconductor lasers opens a new avenue of high-rate physical-layer key distribution using laser synchronization.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC