Optica Open
Browse

Plasmonic parametric resonance

Download (5.58 kB)
preprint
posted on 2023-11-30, 05:15 authored by Alessandro Salandrino
We introduce the concept of Plasmonic Parametric Resonance (PPR) as a novel way to amplify high angular momentum plasmonic modes of nanoparticles by means of a simple uniform optical pump. In analogy with parametric resonance in dynamical systems, PPR originates from the temporal modulation of one of the parameters governing the evolution of the state of the system. As opposed to conventional localized surface plasmon resonances, we show that in principle any plasmonic mode of arbitrarily high order is accessible by PPR with a spatially uniform optical pump. Moreover, in contradistinction with other mechanisms of plasmonic amplification, the coherent nature of PPR lends itself to a more straightforward experimental detection approach. The threshold conditions for PPR are analytically derived. Schemes of experimental realization and detection are also discussed.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC