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Abstract: Point cloud registration technology is widely used in machine vision, reverse engineering, and 

other neighborhood applications, and its efficiency and accuracy have an important impact on product 

data models. Aiming at the problems of the traditional ICP registration algorithm, such as slow 

convergence speed and high requirements on the initial point cloud position, this paper proposes a point 

cloud registration algorithm based on the neighborhood point feature covariance matrix descriptors. First, 

the key points of the point cloud data are extracted by combining the average angle of the neighborhood 

normal vector and ISS algorithms; then, the NPFC descriptors of the key points are calculated, and the 

two-way nearest neighbor feature matching is performed according to the similarity of the NPFC to 

obtain the initial correspondence; for the initial correspondence, the RANSAC algorithm is used to reject 

the mismatches to obtain the final correspondence pairs, and the initial registration parameters are 

calculated by using the final correspondence; finally, the iterative nearest point algorithm is used to 

perform the fine registration. Experiments on public datasets show that NPFC descriptor has high 

descriptiveness and robustness in the face of noise. The registration results also confirm the superiority 

of our registration method in terms of accuracy and efficiency. 

1. Introduction 

With the rise of 3D imaging technology and the rapid development of 3D scanning technology [1-

2], 3D point cloud registration techniques are widely used in many fields, including robot navigation 

[3], shape recognition [4], and reverse engineering [5]. In the process of scanning and measuring, 

the object must be scanned several times at different angles due to the influence of object occlusion, 

environmental factors, or the error of the measuring tool. The registration algorithm is then used to 

register several groups of scanned data together to form a complete point cloud representation of 

the object. 

As the most commonly used registration algorithm, the iterative nearest point algorithm [6] 

(ICP) is simple in concept and high in accuracy, but the speed and convergence of the algorithm are 

highly dependent on the initial point cloud poses, and the objective function also tends to fall into 

the local optimum. For this reason, a common registration system is the "coarse to fine" strategy. 

Coarse registration provides a good initial position, then ICP algorithms are used for fast and 

accurate registration. Coarse registration using feature descriptors is currently a common method. 

The feature descriptor can be defined as a mapping from a 3D object space to a high-dimensional 

vector space. Due to the irregular nature of 3D point clouds, it is challenging to design a feature 

descriptor with high overall performance. 

According to the relative range of object information, the existing feature descriptors can be divided 

into global feature descriptors and local feature descriptors. The global feature descriptor characterizes 

the object by extracting the full model features and shape information of the object. The local feature 
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descriptor implements the feature coding according to the neighborhood spatial distribution information. 

In practical situations, the obtained point cloud information is often incomplete. The global feature 

descriptors are very sensitive to the information, so this paper investigates and analyzes for the local 

feature descriptors. According to the implementation principle of rotation invariance, feature descriptors 

can be divided into two categories: the 3D local description method based on rotation invariance and the 

local feature description method based on the local reference system (LRF). For the first type of feature 

descriptor: Johnson and Heber proposed the spin image [7] (SI) descriptor. SI first uses the normal 

vectors of the key points as reference axes, then projects the local neighborhood points in the horizontal 

and vertical directions of the two-dimensional plane, and finally encodes the information using histogram 

statistics. Therefore, it is more robust and efficient against noise, but histogram statistics cause a loss of 

effective information, which in turn limits the descriptive subaccuracy. Frome et al. proposed the 3D 

Shape Context [8] (3DSC) descriptor. The 3DSC descriptor divides the 3D spherical space into multiple 

containers according to azimuth, elevation, and radius, transforms them into frequency domain signals 

using the harmonic transform, and finally realizes the rotational invariance of the descriptor by the 

rotational invariance of the frequency domain amplitude. This method reduces the loss of valid 

information and improves the accuracy of the descriptor, but frequency domain coding also increases the 

complexity of the descriptor. Rusu et al. constructed Point Feature Histograms [9] (PFH) and Fast Point 

Feature Histograms [10] (FPFH) from histograms of the angles between vectors in local neighborhoods. 

The descriptor can effectively overcome the problem of missing local information about the object in a 

single view, but it still faces the challenges of noise interference, point density variation, and other factors. 

For the local reference system-based feature description method: the most widely used is an LRF-based 

Signature of Histograms of Orien Tations [11] (SHOT) descriptor proposed by Tombari et al. The method 

builds the LRA and then fixes the data set on the LRA and divides it into different blocks. The normal 

offset angles in each block are summed, and all histograms are stitched together to obtain SHOT. The 

experimental results show that the method has high descriptiveness, robustness, and computational 

efficiency. 

The above methods have problems such as low robustness, poor descriptiveness, or high 

computational complexity. Therefore, this paper proposes a fast and robust local 3D feature descriptor, 

NPFC. NPFC can efficiently complete the coarse registration processes such as point cloud feature 

description, feature matching, and transformation matrix solving. The point cloud registration method 

based on the neighborhood point pair feature covariance matrix descriptor (NPFC) can achieve high 

registration results. 

2. NPFC descriptor calculation 

The local feature-based 3D registration method uses point cloud correspondence for registration. 

Correspondence is usually obtained by matching feature descriptors. The point cloud feature descriptor 

is a collection of parameters used to describe the geometric features of a point cloud surface that can 

sufficiently reflect the neighborhood information of the sampled points and has rotational translation 

invariance [12]. In this section, we propose a local feature descriptor that encodes the surface geometric 

features of a sampled point and its neighbors as a covariance matrix, called the neighborhood point-pair 

feature covariance matrix descriptor (NPFC). 

2.1 Local point-pair feature 

The choice of feature parameters is the key to constructing covariance feature descriptors. For the 

construction of the point cloud feature descriptors, elements with good robustness and representativeness 



should be selected. Geometric properties such as normal vectors, distance parameters, and curvature 

variation reflect the most basic geometric features of point clouds [13]. They are rotation-translation 

invariants and easy to compute. Classical point-pair features were originally used for hemispherical 3D 

object recognition [9]. It uses four parameters to describe the relative position and direction of two 

directed points. Based on this, we add curvature change features to enhance the descriptor's feature 

description capability. As shown in Fig. 1, for two random points 𝑝 and 𝑝1 with their normal vectors 

𝑛 and 𝑛1 and curvatures 𝑐 and 𝑐1, let 𝑑 = 𝑝1 − 𝑝. Define characteristics: 

𝐹(𝑝, 𝑝1) = (‖𝑑‖,∠(𝑛, 𝑛1), ∠(𝑝, 𝑑1), ∠(𝑝1, 𝑑), 𝑐 − 𝑐1) (1) 

where ∠(𝑎,𝑏) ∈ [0, 𝜋]  denotes the angle between two vectors. FPH constructs global feature 

descriptions by computing point-pair features for all points in the point cloud, making it computationally 

inefficient and therefore not suitable for point cloud registration. We have studied and improved the 

PPF[14] from the perspective of local description, combining the point-pair features of domain points to 

improve the feature description capability of the feature descriptors in this paper. 

 

Fig. 1. Point-pair feature of two oriented points 

      

 (a) Four oriented points                     (b) Feature parameter set 

Fig. 2. Four oriented points neighbor feature parameter set 

 

2.2 Neighborhood point-pair feature parameters 

Generally, the characterization of the sampled points in the specified neighborhood does not fully reflect 

their characteristics. Based on the local point-pair feature described above, the neighborhood point-pair 

feature parameters (NPFP) are proposed by combining the geometric feature parameters of the 

neighboring points. As shown in Fig. 2(a), for any point 𝑝 and its neighbor 𝑝1, and two neighboring 

points 𝑝11  and 𝑝12  of 𝑝1 . Neighboring points are defined as points that are less than a threshold 



distance r from the sampled points, and the normal vectors of 𝑝, 𝑝1, 𝑝11, and 𝑝12 are 𝑛, 𝑛1, 𝑛11, and 

𝑛12. The neighborhood point-pair feature parameter (NPFP) is defined as:   

𝑁𝑃𝐹𝑃(𝑝, 𝑝1) = (𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5, 𝐹6, 𝐹7, 𝐹8, 𝐹9) (2) 
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where 𝑑1 = 𝑝1 − 𝑝, 𝑑11 = 𝑝11 − 𝑝1, and 𝑑12 = 𝑝12 − 𝑝1 are vector differences; 𝑐𝑝, 𝑐𝑝1 , 𝑐𝑝11 , and 

𝑐𝑝12  are the curvatures of 𝑝 , 𝑝1 , 𝑝11 , and 𝑝12 . The neighborhood feature parameters of the four 

directed points are shown in Fig. 2(b). 

Extend the neighborhood point-pair feature parameter (NPFP) into point cloud space. For any point 

𝑝 in the point cloud, given the neighborhood radius 𝑟, the neighborhood point 𝑞𝑖(𝑖 = 1,2,⋯𝑚) within 

the space sphere can be determined. Using the same threshold radius 𝑟, 𝑚 spatial spheres can be 

determined using the neighborhood point as the center 𝑞𝑖(𝑖 = 1,2,⋯𝑚). Let the neighborhood point 

with radius 𝑞𝑖 be 𝑞𝑖𝑗(𝑖 = 1,2,⋯𝑚). Define NPFP as: 

𝑁𝑃𝐹𝑃(𝑝, 𝑞1) = (𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5, 𝐹6, 𝐹7, 𝐹8, 𝐹9) (4) 
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where 𝑑𝑖 = 𝑝 − 𝑞𝑖 and 𝑑𝑖𝑗 = 𝑞𝑖 − 𝑞𝑖𝑗  are the vector differences; 𝑛𝑖 and 𝑛𝑖𝑗 are the normal vectors 

of 𝑞𝑖 and 𝑞𝑖𝑗; and 𝑐𝑞𝑖 and 𝑐𝑞𝑖𝑗 are the curvatures of 𝑞𝑖 and 𝑞𝑖𝑗 . The NPFP contain the geometric 

features of the neighboring point-pair and the mean value of the neighboring point-pair features. It is 

rotationally and translationally invariant and has stronger feature description capabilities compared to 

local point-pair features. 



2.3 Neighborhood point-pair feature covariance matrix (NPFC) descriptor 

By calculating all 𝑁𝑃𝐹𝑃(𝑝, 𝑞𝑖), 𝑚 sets of neighborhood point-pair feature parameters can be obtained, 

and each set of neighborhood point-pair feature parameters contains nine elements. When 𝑖 = 1, the 

influence range of 𝑁𝑃𝐹𝑃(𝑝, 𝑞𝑖) is shown in Fig. 3(a). After obtaining the feature vector 𝑁𝑃𝐹𝑃(𝑝, 𝑞𝑖), 

define the neighborhood point-pair feature covariance matrix descriptor as: 

𝑁𝑃𝐹𝐶(𝑝) =
1

𝑚 − 1
∑ [𝑁𝑃𝐹𝑃(𝑝, 𝑞𝑖) − 𝑁𝑃𝐹𝑃(𝑝, 𝑞𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ][𝑁𝑃𝐹𝑃(𝑝, 𝑞𝑖) − 𝑁𝑃𝐹𝑃(𝑝, 𝑞𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]

𝑇𝑚

𝑖=1
(6) 

where 𝑚 is the number of neighboring points 𝑝, 𝑁𝑃𝐹𝑃(𝑝, 𝑞𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the mean value of the neighboring 

points of 𝑝 on the feature parameters, and the influence region of 𝑁𝑃𝐹𝐶(𝑝) is shown in Fig. 3(b). 

      

(a)The Influence region of 𝑁𝑃𝐹𝑃(𝑝, 𝑞𝑖)      (b)The Influence region of 𝑁𝑃𝐹𝐶(𝑝) 

Fig. 3. The Influence region of descriptor 

In probability theory and statistics, covariance is a measure of the degree of linear correlation of the 

joint distribution of two random variables [15]. In image processing, covariance has been introduced as 

a descriptor [16,17]. The covariance matrix descriptor can be viewed as an abstract description of the 

information about the neighborhood of the sampled points. It samples the collected features as joint 

distributions, weakens the spatial distribution information of neighboring points, and has spatial rotation 

invariance. By the central limit theorem, the feature distribution can be correctly represented as long as 

the obtained features are meaningful enough, which is more robust than with the histogram descriptors 

[18]. The NPFC descriptor in this paper is compared to the multiscale covariance matrix descriptor [19], 

where the NPFC descriptor uses neighborhood mean parameters such as 𝐹6~9. The robustness of the 

descriptors for noise can be improved. Fig. 4 shows an illustration of the descriptors for a given key point. 

 

(a)Source point cloud     (b) Downsampling     (c) Local points   (d) Division       (e) NPFP       (f) NPFC 

Fig. 4. Key point descriptor generation procedure. (a) Rabbit_bun000 point cloud. (b) Downsampling. (c) Local points determined 

by the neighborthood radius r. (d) Take different points to calculate parameters. (e) Neighborhood point-pair feature parameter. (f) 

NPFC descriptor. 



3. NPFC-based point cloud registration algorithm 

The NFPC-based point cloud registration process includes data pre-processing, feature point extraction, 

feature matching, coarse registration, and ICP fine registration. The registration process is shown in Fig .5. 

 

Fig. 5. Registration pipeline of point cloud. 

3.1 Data pre-processing 

As shown in Fig. 6(a), the point cloud is first downsampled for voxels to reduce the number of points 

while preserving the shape features of the point cloud. The point cloud data after downsampling is shown 

in Fig. 6(b). Principal component analysis is then used to calculate the normal vector and curvature of 

each point in the downsampled point cloud data, which are used as input parameters for key point 

extraction and NPFC descriptor construction. The principal component analysis algorithm [20] is a 

common method for computing curvature and normal vectors. The analysis of covariance is performed 

on 𝑝𝑖  and its neighboring points 𝑝𝑖𝑗  in its radius neighborhood for any point 𝑝𝑖  within the point cloud 

𝑃. 

𝑝�̅� =
1

𝑘
(𝑝𝑖1 + 𝑝𝑖2 +⋯+ 𝑝𝑖𝑘) (7) 

𝐶𝑖 =
1

𝑘
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⋮

𝑝𝑖𝑘 − 𝑝�̅�
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𝑇
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𝐶𝑖 × 𝑣𝑖
(𝑗) = 𝜆𝑖

(𝑗) × 𝑣𝑖
(𝑗), 𝑗 = {1,2,3} (9) 

where 𝑝�̅� is the center of gravity of the neighborhood point cloud, 𝐶𝑖 is a 3 × 3 covariance matrix, 

and 𝑘  is the number of neighborhood points at 𝑝𝑖 . 𝜆𝑖
(𝑗)

 and 𝑣𝑖
(𝑗)  denote the eigenvalues and 

eigenvectors of 𝐶𝑖. If the eigenvectors satisfy 𝜆𝑖
(1) < 𝜆𝑖

(2) < 𝜆𝑖
(3)

, then 𝜆𝑖
(1)

 is the normal vector of 

𝑝𝑖 , and the curvature of 𝑝𝑖  is: 

𝑐𝑖(𝑝𝑖) =
𝜆𝑖
(1)

𝜆𝑖
(1) + 𝜆𝑖

(2) + 𝜆𝑖
(3)

(10) 

where 𝑖 = 1,2,⋯ ,𝑁, 𝑁 is the number of downsampling points. 

The normal vector estimated by the principal component analysis method has no direction, so the 

direction of the normal vector must be redefined. The direction of the normal vector is defined as: 

𝑛𝑖 = {
𝑛𝑖 , 𝑛𝑖 ∙ 𝑝𝑖 − 𝑝�̅� > 0
−𝑛𝑖 , 𝑛𝑖 ∙ 𝑝𝑖 − 𝑝�̅� ≤ 0

(11) 



Both the source and target point clouds must redefine the direction of the normal vector. The normal 

vector is shown in Fig. 6(c). 

 

(a)The original point cloud                 (b)Downsampling               (c)Normal of the sampled cloud 

Fig. 6. Data preprocessing. (a) The point cloud from left to right are ArmadilloOnHeadMutiple_0 and dragonStandRight_0. (b) 

Downsampling. (c) The point is red and the sky blue line represents the normal. 

3.2 Key Points Extraction 

The key point of the point cloud is to obtain a set of points with stability and differentiation by defining 

detection criteria. The key points provide more pronounced geometric information than other point sets 

and are used as input point sets in subsequent coarse registration work. Extracting key points from a 

single feature can result in incomplete feature information and redundant calculations. In this paper, the 

key point extraction strategy is to first extract the key points using the average angle of the neighborhood 

normal vector and then use the ISS algorithm [21] for secondary key point extraction. 

1) Average angle of the neighborhood normal vector 

The normal vector is an important geometric feature in three-dimensional space with rotation-translation 

invariance. In point cloud processing, the normal vector angle is an important property to describe the 

geometric properties of the point cloud. The key point extraction algorithm selects key points by 

comparing the mean value of the normal vector angle of the sampled points with the mean value of the 

normal vector angle of the neighboring points in the radius neighborhood. For any point 𝑝𝑖  in the point 

cloud, let the normal vector of 𝑝𝑖  be 𝑛𝑖, the neighboring points of 𝑝𝑖  be 𝑝𝑖𝑗 , and the normal vector of 

𝑝𝑖𝑗  be 𝑛𝑖𝑗. The mean values of the normal vector entrainment angles in the neighborhood of 𝑝𝑖  is: 

𝑎𝑛𝑔𝑙𝑒(𝑝𝑖) =
1

𝑘
∑∠(𝑛𝑖 , 𝑛𝑖𝑗)

𝑘

𝑗=1

(12) 

where k is the number of neighboring points of 𝑝𝑖 , 𝑗 = 1,2,⋯ , 𝑘, 𝑖 = 1,2,⋯ ,𝑁 , and 𝑁 is the number 

of points in the point cloud. The larger 𝑎𝑛𝑔𝑙𝑒(𝑝𝑖) is, the greater the curvature of the point cloud surface, 

as shown in Fig. 7(a). The smaller 𝑎𝑛𝑔𝑙𝑒(𝑝𝑖) is, the smaller the curvature of the point cloud surface, as 

shown in Fig. 7(b). The global average angle of the neighborhood normal vector is used as the screening 

threshold, then the key point screening condition is: 

{
 
 

 
 𝑎𝑛𝑔𝑙𝑒(𝑝𝑖) ≥

1

𝑁
∑𝑎𝑛𝑔𝑙𝑒(𝑝𝑖),  𝑝𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑘𝑒𝑦 𝑝𝑜𝑖𝑛𝑡; 

𝑁

𝑖=1

𝑎𝑛𝑔𝑙𝑒(𝑝𝑖) <
1

𝑁
∑𝑎𝑛𝑔𝑙𝑒(𝑝𝑖),  𝑝𝑖  𝑖𝑠 𝑛𝑜𝑡 𝑡ℎ𝑒 𝑘𝑒𝑦 𝑝𝑜𝑖𝑛𝑡; 

𝑁

𝑖=1

 (13) 

The points with more prominent geometric characteristics on the point cloud surface can be quickly 

extracted as key points by calculating the average angle of the neighborhood normal vector. 



 

(a) Large angle            (b) Small Angle 

Fig. 7. Average angle of neighborhood normal vector. (a) Large angle. (b) Small angle. 

2) ISS Key Points 

Secondary extraction of key points using the ISS algorithm [21]: the ISS key point extraction algorithm 

is a method for filtering key points based on neighborhood information. For any point 𝑝𝑖  in the point 

cloud, perform covariance analysis on 𝑝𝑖  and its neighboring point 𝑝𝑖𝑗  in its neighborhood: 

𝑐𝑜𝑣(𝑝𝑖) =
∑ 𝜔𝑖𝑗(𝑝𝑖 − 𝑝𝑖𝑗)(𝑝𝑖 − 𝑝𝑖𝑗)

𝑇𝑘
𝑗=1

∑ 𝜔𝑖𝑗
𝑘
𝑗=1

(14) 

𝜔𝑖𝑗 =
1

‖𝑝𝑖 − 𝑝𝑖𝑗‖
(15) 

where 𝑘 is the number of neighbors and 𝜔𝑖𝑗 is the weight value. Calculation of all characteristic 

values {𝜆𝑖
3, 𝜆𝑖

2, 𝜆𝑖
1}(𝜆𝑖

1 ≤ 𝜆𝑖
2 ≤ 𝜆𝑖

3) of 𝑐𝑜𝑣(𝑝𝑖). Given thresholds 𝜀1 and  𝜀2, satisfying [Eq. (1)] 

is the key points of the ISS. The key points detected by combining average angle of the 

neighborhood normal vector and the ISS algorithm are shown in Fig. 8. 

 

Fig. 8. Key points. (The red are the key points. The Point from left to right are bun000, ArmadilloOnHeadMutiple_0, 

dragonStandRight_0, happySideRight_0). 

3.3 Feature Matching 

Feature matching refers to establishing a set of feature correspondences between two sets of 

neighborhood covariance matrix feature descriptors, thus determining the correspondence between key 

points. The difficulty lies in computing the similarity of the descriptors and finding the correspondence 

based on the similarity of the descriptors. 

1) Initial Feature Matching 

The similarity of NPFC descriptors can be measured by the similarity of the covariance matrices: the 

smaller the distance, the greater the similarity between the descriptors. The covariance matrix does not 



depend on Euclidean space, so it is not possible to compute the similarity between covariance matrix 

descriptors using the distance formula commonly used in machine learning. The covariance matrix 

belongs to a type of Riemannian manifold, and the similarity of the covariance matrix descriptors can be 

measured by calculating the geodesic distance [22]. To simplify the calculation, the logarithmic 

eigenvalue method [23] is used in this paper to calculate the similarity of NPFC descriptors. Calculating 

the eigenvalues starts with calculating the generalized covariance matrix. The generalized covariance 

matrix is defined as follows: 

𝐶(𝑋, 𝑌) = 𝑌−1𝑋 (16) 

where, 𝑋 and 𝑌 are the NPFC descriptors of the key points in the source point cloud and target point 

cloud. The covariance matrix is a positive definite matrix, so 𝑌 must be an invertible matrix. Calculate 

the similarity of the covariance matrix descriptors using the eigenvalue method. 

𝑠𝑖𝑚(𝑁𝑃𝐹𝐶(𝑝), 𝑁𝑃𝐹𝐶(𝑞)) =
1

𝑁
∑𝑙𝑜𝑔2

2(𝜆𝑖)

𝑁

𝐼=1

(17) 

where 𝑁 is the dimension of the covariance matrix, which is 9 in this paper, is the eigenvalue of the 

generalized covariance matrix, and the subscript 2 of the logarithmic function denotes the base and the 

superscript 2 denotes the computed square. 

The similarity of descriptors is calculated according to the NFPC of key points in the source and 

target point clouds according to Equation 18, and then the feature matching is performed for the 

bidirectional nearest neighbor distance. For the source and target point clouds, the correspondence is 

found in another set of point clouds according to the nearest neighbor distance according to the similarity 

of the NFPC, respectively, and we can get two sets of correspondences. If there are identical pairs of 

correspondence points in the set of these two correspondences, the correspondence is considered to be 

the correct correspondence. This completes the initial feature matching. 

2) Matching relationship screening 

Point cloud data scanned from different viewpoints has some non-overlapping areas that may be 

mismatched during initial feature matching. And the local point cloud feature descriptor only needs to 

traverse the points in the specified range, improving computational efficiency while sacrificing some 

accuracy. Therefore, to ensure the correct match, the initial match must be mismatched and discarded to 

improve the coarse registration accuracy. In this paper, we use the RANSAC algorithm [24,25] for 

mismatch rejection. 

The RANSAC algorithm selects the optimal rotation and translation parameters using the least-

cost function: 

𝐽 = ∑𝐿(𝐸(𝑑;𝑀))

𝑑∈𝐷

(18) 

where 𝑀 is the estimated rotation and translation matrix parameters, 𝐷 is the matching relationship 

dataset, 𝑑 is the sample set including three matched point pairs, 𝐸 is the error function, and 𝐿 is the 

loss function. RANSAC algorithm based on 0-1 Loss Function: 

𝐿𝑟(𝑒) = {
0, |𝑒| ≤ 𝑡
1, |𝑒| > 𝑡

(19) 

where 𝑒 is the alignment error and 𝑡 is the error threshold for determining the matching relationship. 

The number of samples required by the RANSAC algorithm should be large enough to ensure that at 

least three pairs of correct matching relations are selected with a certain confidence probability 𝑝. 



𝑁 =
log(1 − 𝑝)

log(1 − (1 − 𝜀)𝑠)
(20) 

where 𝑠 is the number of matching relationships and 𝜀 is the proportion of mismatches. Equation 

20 shows that by reducing the proportion of mismatches and appropriately reducing the number of 

matching relationships used to estimate the rotation translation matrix, the sampling number of the 

RANSAC algorithm can be reduced, and the efficiency and accuracy of the RANSAC algorithm can be 

improved. The key point matching relationship is shown in Fig. 9 

 

Fig. 9. Feature matching. The point cloud used by (a), (c), and (d) are ArmadilloOnHeadMultiple_0&30, 

 dragonStandRight_0&24, and happySideRight_0&24 from the Stanford 3D dataset. 

3.4 ICP algorithm 

To improve the registration accuracy of point clouds with different viewpoints, the point clouds should 

be fine-registered after coarse registration. In this paper, the exact registration of the point cloud is 

performed using the Iterative Closest Point [6] (ICP) algorithm. The main idea is to iteratively compute 

the optimal rotation matrix R and translation vector T of the corresponding point set by minimizing the 

distance between the source point cloud 𝑃{𝑝𝑖}𝑖=1
𝑛  and the target point cloud 𝑄{𝑞𝑖}𝑖=1

𝑚 . The minimum 

objective function is: 

min
𝑅,𝑇

(∑‖𝑅𝑝𝑖 + 𝑇 − 𝑞𝑖‖2
2

𝑁

𝑖=1

) (21) 

The ICP algorithm requires a high initial position and slow convergence of iterations, and it is easy 

to fall into a local optimum in the case of noise interference. The initial transformation matrix is the key 

to obtaining good registration accuracy. The above initial registration process can be used to obtain the 



initial rotation and translation matrix to achieve coarse registration of the point cloud. This provides a 

good initial position for the ICP algorithm to perform fine registration. 

4. Experimental results and analysis 

In this section, we perform three types of experiments, namely the descriptor performance experiment, 

the descriptor coarse registration experiment, and the Gaussian noise registration experiment. The 

descriptor performance experiments verify the robustness of NPFC descriptors under Gaussian noise. 

The coarse descriptor registration experiments demonstrate the superior accuracy and efficiency of the 

NPFC coarse descriptor registration method. The Gaussian noise registration experiment verifies that the 

algorithm in this paper can guarantee high efficiency and accuracy even in the case of Gaussian noise. 

The point cloud datasets used in the experiments were the Stanford Bunny, Armadillo, and Dragon 

datasets [26]. PFH, 3DSC, SHOT, FPH, and the algorithms in this paper were implemented in Visual 

Studio 2017 and PCL 1.8.1. The experiments were performed on a computer configured with an Intel 

Core i5 2.5 GHz CPU, 8 GB of RAM, and the Windows 10 operating system. 

4.1 Descriptor Performance Experiment 

Recall and 1-Precision Curves [27,28] are the metrics used to evaluate the descriptors. In this part of the 

experiment, the Recall and 1-Precision Curves (Recall vs. 1-Precision Curve, RP Curve) is used to 

compare the performance of different descriptors. The RP Curve is generated as follows: Given the field 

point cloud, the model point cloud, and the truth transformation matrix between them, the distance 

between each feature descriptor in the field point cloud and the feature descriptors of the full model point 

cloud is calculated to find the nearest and second-nearest feature descriptors. If the ratio between the 

closest distance and the next closest distance is less than a set threshold, the feature descriptors of the 

site point cloud are considered to form a matching point pair with the feature descriptors in that closest 

model point cloud. From this pair of feature descriptors, the corresponding feature point pairs are found, 

and the Euclidean distances between the feature points in the model point cloud and the feature points in 

the corresponding field point cloud are transformed by the true transformation matrix. If this distance is 

small enough, the matching point pair is considered a correct matching point pair, and vice versa. Recall 

and precision are defined as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑚𝑎𝑡𝑐ℎ𝑠

𝑡𝑎𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑓𝑒𝑎𝑡𝑢𝑟𝑒
(22) 

1 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑚𝑎𝑡𝑐ℎ𝑠

𝑡𝑎𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑠
(23) 

Multiple recalls and accuracies can be obtained by varying the closest distance and next closest 

distance ratios to generate RP curves. Ideally, if the descriptor achieves both precision and recall, 

the RP curve will appear in the upper left corner of the graph. In our experiments, we use the ISS 

algorithm to compute the key points in the point cloud and obtain the corresponding key points in 

the scene through the truth transformation matrix to remove the effect of the key point localization 

error 

The same Gaussian noise, key point set, and matching conditions are used to match features in the 

Stanford Common dataset using five feature descriptors, and the matching results are analyzed for 

comparison. Add Gaussian noise with standard deviations of 0.1 pr, 0.3 pr, and 0.5 pr to the point cloud 

data (pr is the point cloud resolution) and compare FPFH, FPH, SHOT, 3DSC, and NPFC. The 

experimentally generated RP curves are shown in Fig. 10. It can be seen from Fig. 10 that the NPFC 

descriptors outperform all other feature descriptors for different Gaussian noises. 



 

(a) 

 

(b) 

 

(c) 

Fig.10. (a) Set 𝜎 = 0.1 𝑝𝑟 standard Gaussian noise. (b) Set 𝜎 = 0.3 𝑝𝑟 standard Gaussian noise. (c) Set 𝜎 = 0.5 𝑝𝑟 standard 

Gaussian noise. 



4.2 Descriptor coarse registration experiment 

To verify the superiority of the method in this paper, the key point extraction method proposed in this 

paper is used to perform coarse alignment experiments on two point cloud datasets from different 

viewpoints using FPFH, 3DSC, SHOT, FPH feature descriptions, and sampling consistency algorithms.  

The registration experiments are performed using three common datasets for different descriptors, and 

the experimental results are compared and analyzed with the registration results of the method described 

in the paper. The metric used to evaluate registration accuracy in text is the root mean square error 

(RMSE) [29], defined as: 

𝑅𝑀𝑆𝐸 = √
∑ ‖𝑇𝑝𝑖 − 𝑞𝑖‖
𝑁
𝑖

𝑁
(24) 

where point 𝑞𝑖 in the target point cloud is the closest point to 𝑝𝑖 in the source point cloud under the 

estimated pose. 

Fig. 11 shows the results of coarse registration of three point cloud datasets using different methods, 

and table 1 shows the registration errors and time consumed. From Fig. 11, it can be seen that the FPFH 

and FPH combined with the sampling consistency method and the method in this paper achieve a better 

coarse registration process, but the coarse registration result of the method in this paper is the best. Table 

1 quantifies the coarse registration of the five methods, and the proposed method is optimal in terms of 

alignment error and operational efficiency. The method in this paper reduces the registration error by 

46.7%, 53.4%, and 49.4% on average, and the registration speed is better than other methods. In 

conclusion, the NPFC-based coarse registration method proposed in this paper can achieve better 

registration results. 

 

 

(a)                   (b)                  (c)                   (d)                   (e) 

Fig. 11. Coarse registration experiment. The experimental dataset are bun000&bun045, ArmadilloOnHeadMultiple_0&30, 

and dragonStandRight_0&24. (a) SAC-IA + FPFH. (b) SAC-IA + 3DSC. (c) SAC-IA + SHOT. (d) SAC-IA + FPH. (e)

 Proposed algorithm. 



 

Table 1. Point cloud coarse registration accuracy and time 

Dataset Algorithm Error/10-6m Time-consuming/s 

bun000&045 

SAC_IA + FPFH  2.572 24.626 

SAC_IA + 3DSC 6.574 80.117 

SAC_IA + SHOT 4.906 30.79 

SAC_IA + FPH 4.155 26.995 

Proposed 2.165 2.063 

ArmadilloOnHead-

Multiple_0&30 

SAC_IA + FPFH  1.736 19.371 

SAC_IA + 3DSC 7.675 67.608 

SAC_IA + SHOT 7.5019 27.152 

SAC_IA + FPH 4.255 21.036 

Proposed 1.732 2.171 

dragonStandRight_0&24 

SAC_IA + FPFH  4.347 22.509 

SAC_IA + 3DSC 7.762 81.949 

SAC_IA + SHOT 7.998 28.1 

SAC_IA + FPH 6.993 22.579 

Proposed 3.866 1.891 

 

 

Fig. 12. Gaussian noise registration result, the experimental dataset are bun000&045. (a) SAC-IA + FPFH + ICP. (b) 



SAC-IA + 3DSC + ICP. (c) SAC-IA + SHOT + ICP. (a) SAC-IA + FPH + ICP. (d) Proposed algorithm. 

Table 2. Gaussian noise registration accuracy and time 

Item Algorithm 

Gaussian noise threshold 

0.1 pr 0.3 pr 0.5 pr 

Time-consuming/s 

SAC-I + FPFH + ICP 29.971 34.114 44.945 

SAC-I + 3DSC + ICP 97.682 138.822 150.765 

SAC-I + SHOT + ICP 41.835 55.135 62.923 

SAC-I + FPH + ICP 34.174 38.582 43.542 

Proposed 7.334 8.220 8.588 

Error/10-6m 

SAC-I + FPFH + ICP 2.318 2.179 2.180 

SAC-I + 3DSC + ICP 2.202 4.292 5.022 

SAC-I + SHOT + ICP 2.388 2.179 2.180 

SAC-I + FPH + ICP 2.165 2.202 2.326 

Proposed 2.161 2.169 2.171 

4.3 Descriptor coarse registration experiment 

The actual acquisition point cloud will be noisy. To further verify the robustness of the algorithm in the 

paper, Gaussian noise registration experiments are performed using the Bunny dataset from Stanford 

University. Gaussian noise of 0.1 pr, 0.3 pr, and 0.5 pr is added to the source and target point clouds. The 

SAC-IA coarse registration and ICP fine registration are performed using different descriptors and then 

compared with the algorithm in this paper. The registration elapsed time is the total time for coarse and 

fine registration, and the registration error is the RMSE mentioned above. The plot of the Bunny dataset 

registration results and registration data is shown in Fig. 12 and table 2. 

It can be seen from Fig. 12 that the 3DSC descriptor registration results get worse as the Gaussian 

noise threshold increases, while all other methods can achieve good registration results. Table 2 shows 

that the operating efficiency of the algorithm in this paper is significantly better than that of the 

registration methods for other descriptors at different Gaussian noises levels. With the addition of 

Gaussian noise of 0.1 pr, 0.3 pr, and 0.5pr, the registration error of the algorithm in this paper is reduced 

by 4.58%, 12.97%, and 16.308% on average. Through the analysis of Gaussian noise registration results, 

the algorithm in this paper has high registration efficiency and accuracy, and also has good robustness. 

5. Conclusions 

In this paper, a three-dimensional feature descriptor (NPFC) for base and neighbor point pair features is 

proposed. The NPFC descriptor is a covariance matrix feature descriptor formed by computing the local 

neighborhood information of the point cloud. The experimental data show that NPFC has better 

robustness in describing 3D local surface information compared to FPFH, FPH, 3DSC, and SHOT. Based 

on the NPFC, we propose a point cloud registration method. The registration method can be divided into 

two stages: coarse registration and fine registration. The coarse registration process includes point cloud 

pre-processing, key point extraction, key point feature description, and feature matching. Point cloud 

preprocessing involves downsampling the point cloud and calculating the normal vector and curvature 



of the downsampled point cloud. The key point extraction is a set of points proposed by combining the 

average angle of the neighborhood normal vector with the ISS algorithm to extract geometric features. 

The key point feature description is the NPFC feature descriptor used to calculate the key point. Feature 

matching is done by using NPFC descriptors, using descriptor similarity and the RANSAC algorithm to 

find and filter the correspondence, and calculating the transformation matrix to complete the coarse 

registration. In the fine registration stage, the transformation matrix obtained from the coarse registration 

is used as the initial value, and then the ICP algorithm is used to complete the final registration of the 

point cloud. Compared with other feature descriptors, the coarse registration method using NPFC has 

better registration accuracy and provides better initial values for the ICP algorithm, which can effectively 

improve the registration accuracy of the ICP algorithm. The method in this paper has better accuracy, 

efficiency, and robustness to noise. 
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