Optica Open
Browse
arXiv.svg (5.58 kB)

Polarization-encoded co-localization microscopy at cryogenic temperatures

Download (5.58 kB)
preprint
posted on 2023-11-30, 20:18 authored by Daniel Böning, Franz-Ferdinand Wieser, Vahid Sandoghdar
Super-resolution localization microscopy is based on determining the positions of individual fluorescent markers in a sample. The major challenge in reaching an ever higher localization precision lies in the limited number of collected photons from single emitters. To tackle this issue, it has been shown that one can exploit the increased photostability at low temperatures, reaching localization precisions in the sub-nanometer range. Another crucial ingredient of single-molecule super-resolution imaging is the ability to activate individual emitter within a diffraction-limited spot. Here, we report on photoblinking behavior of organic dyes at low temperature and elaborate on the limitations of this ubiquitous phenomenon for selecting single molecules. We then show that recording the emission polarization not only provides access to the molecular orientation, but it also facilitates the assignment of photons to individual blinking molecules. Furthermore, we employ periodical modulation of the excitation polarization as a robust method to effectively switch fluorophores. We bench mark each approach by resolving two emitters on different DNA origami structures.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC