Optica Open
Browse

Polarization and wavelength agnostic nanophotonic beam splitter

Download (5.58 kB)
preprint
posted on 2023-11-30, 06:01 authored by David González-Andrade, Christian Lafforgue, Elena Durán-Valdeiglesias, Xavier Le Roux, Mathias Berciano, Eric Cassan, Delphine Marris-Morini, Aitor V. Velasco, Pavel Cheben, Laurent Vivien, Carlos Alonso-Ramos
High-performance optical beam splitters are of fundamental importance for the development of advanced silicon photonics integrated circuits. However, due to the high refractive index contrast of the silicon-on-insulator platform, state of the art Si splitters are hampered by trade-offs in bandwidth, polarization dependence and sensitivity to fabrication errors. Here, we present a new strategy that exploits modal engineering in slotted waveguides to overcome these limitations, enabling ultra-wideband polarization-insensitive optical power splitters, with relaxed fabrication tolerances. The proposed splitter relies on a single-mode slot waveguide which is transformed into two strip waveguides by a symmetric taper, yielding equal power splitting. Based on this concept, we experimentally demonstrate -3$\pm$0.5 dB polarization-independent transmission in an unprecedented 390 nm bandwidth (1260 - 1650 nm), even in the presence of waveguide width deviations as large as $\pm$25 nm.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC