Optica Open
Browse

Polarization entanglement enabled by orthogonally stacked van der Waals NbOCl2 crystals

Download (5.58 kB)
preprint
posted on 2024-08-15, 16:00 authored by Qiangbing Guo, Yun-Kun Wu, Di Zhang, Qiuhong Zhang, Guang-Can Guo, Andrea Alù, Xi-Feng Ren, Cheng-Wei Qiu
Polarization entanglement holds significant importance for photonic quantum technologies. Recently emerging subwavelength nonlinear quantum light sources, e.g., GaP and LiNbO3 thin films, benefiting from the relaxed phase-matching constraints and volume confinement, has shown intriguing properties, such as high-dimensional hyperentanglement and robust entanglement anti-degradation. Van der Waals (vdW) NbOCl2 crystal, renowned for its superior optical nonlinearities, has emerged as one of ideal candidates for ultrathin quantum light sources [Nature 613, 53 (2023)]. However, polarization-entanglement is inaccessible in NbOCl2 crystal due to its unfavorable nonlinear susceptibility tensor. Here, by leveraging the twist-stacking degree of freedom inherently in vdW systems, we showcase the preparation of tunable polarization entanglement and quantum Bell states. Our work not only provides a new and tunable polarization-entangled vdW photon-pair source, but also introduces a new knob in engineering the entanglement state of quantum light at the nanoscale.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC