Optica Open
Browse
arXiv.svg (5.58 kB)

Polarized bound state in the continuum and resonances with tunable Q-factor in an anisotropic photonic crystal

Download (5.58 kB)
preprint
posted on 2023-11-30, 17:29 authored by Ivan V. Timofeev, Dmitrii N. Maksimov, Almas F. Sadreev
We consider a one-dimensional photonic crystal composed of alternating layers of isotropic and anisotropic dielectric materials. Such a system has different band structures for different polarizations of light. We demonstrate that if an anisotropic defect layer is inserted into the structure, the crystal can support an optical bound state in the continuum. By tilting the principle dielectric axes of the defect layer relative to those of the photonic crystal we observe a long-lived resonance in the transmission spectrum. We derive an analytical expression for the decay rate of the resonance that agrees well with the numerical data by the Berreman anisotropic transfer matrix approach. An experimental set-up with a liquid crystal defect layer is proposed to tune the Q-factor of the resonance through applying an external electric field. We speculate that the set-up provides a simple and robust platform for observing optical bound states in the continuum in the form of resonances with tunable Q-factor.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC