Optica Open
Browse
arXiv.svg (5.58 kB)

Positronium density measurements using polaritonic effects

Download (5.58 kB)
preprint
posted on 2023-01-10, 03:03 authored by Erika Cortese, David B. Cassidy, Simone De Liberato
Recent experimental advances in Positronium (Ps) physics have made it possible to produce dense Ps ensembles in which Ps-Ps interactions may occur, leading to the production of Ps$_2$ molecules and paving the way to the realization of a Ps Bose-Einstein Condensate (BEC). In order to achieve this latter goal it would be advantageous to develop new methods to measure Ps densities in real-time. Here we describe a possible approach to do this using polaritonic methods: using realistic experimental parameters we demonstrate that a dense Ps gas can be strongly coupled to the photonic field of a distributed Bragg reflector microcavity. In this strongly coupled regime, the optical spectrum of the system is composed of two hybrid positronium-polariton resonances separated by the vacuum Rabi splitting, which is proportional to the square root of the Ps density. Given that polaritons can be created on a sub-cycle timescale, a spectroscopic measurement of the vacuum Rabi splitting could be used as an ultra-fast Ps density measurement in regimes relevant to Ps BEC formation. Moreover, we show how positronium-polaritons could potentially enter the ultrastrong light-matter coupling regime, introducing a radically novel platform to explore its non-perturbative phenomenology.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC