Optica Open
Browse
arXiv.svg (5.58 kB)

Post-compression of multi-mJ picosecond pulses to few-cycles approaching the terawatt regime

Download (5.58 kB)
preprint
posted on 2023-06-20, 16:00 authored by Supriya Rajhans, Esmerando Escoto, Nikita Khodakovskiy, Praveen K. Velpula, Bonaventura Farace, Uwe Grosse-Wortmann, Rob J. Shalloo, Cord L. Arnold, Kristjan Põder, Jens Osterhoff, Wim P. Leemans, Ingmar Hartl, Christoph M. Heyl
Advancing ultrafast high-repetition-rate lasers to shortest pulse durations comprising only a few optical cycles while pushing their energy into the multi-millijoule regime opens a route towards terawatt-class peak powers at unprecedented average power. We explore this route via efficient post-compression of high-energy 1.2 ps pulses from an Ytterbium InnoSlab laser to 9.6 fs duration using gas-filled multi-pass cells (MPCs) at a repetition rate of 1 kHz. Employing dual-stage compression with a second MPC stage supporting a close-to-octave-spanning bandwidth enabled by dispersion-matched dielectric mirrors, a record compression factor of 125 is reached at 70% overall efficiency, delivering 6.7 mJ pulses with a peak power of about 0.3 TW. Moreover, we show that post-compression can improve the temporal contrast at picosecond delay by at least one order of magnitude. Our results demonstrate efficient conversion of multi-millijoule picosecond lasers to high-peak-power few-cycle sources, opening up new parameter regimes for laser plasma physics, high energy physics, biomedicine and attosecond science.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports