posted on 2023-11-30, 19:33authored byHaochen Tian, Defeng Zou, Youjian Song, Minglie Hu
Investigation on the relative phase evolution between two bounded optical solitons is essential for its potential applications in development of larger telecommunication capacity of optical fiber transmission lines, resolution improvement in advancing ultrafast characterization approaches and development of all-optical information storage. Here we characterized relative comb-line phase jitter power spectral density (PSD) of a soliton molecule pair generated from a passively mode-locked Er:fiber laser. Through tracking the intensity difference between two selected wavelengths in one certain spectral interference fringe, the relative comb-line phase noise PSD is measured by balanced detection. The estimated measurement resolution is at 10^(-14) rad2/Hz level and the estimated integrated phase noise from 10 MHz to 100 Hz is 2.04 mrad. The estimated relative linewidth is far below 1 mHz. Comparison between phase noise PSD and intensity noise PSD indicates that AM-PM conversion plays an important role in relative phase jitter dynamics between the two solitons. Our spectral interference fringe tracking technique is attractive for its simplicity and shows potential in ultra-high resolution in phase noise measurement, providing an ultra-sensitive alternative approach for relative phase noise stabilization of optical soliton molecules, between two independent mode-locked lasers and optical length stabilization of interferometers.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.