Optica Open
Browse

Precision Doppler Shift Measurements with a Frequency Comb Calibrated Laser Heterodyne Radiometer

Download (5.58 kB)
preprint
posted on 2023-07-18, 16:00 authored by Ryan K. Cole, Connor Fredrick, Newton H. Nguyen, Scott A. Diddams
We report precision atmospheric spectroscopy of $CO_2$ using a laser heterodyne radiometer (LHR) calibrated with an optical frequency comb. Using the comb-calibrated LHR, we record spectra of atmospheric $CO_2$ near 1572.33 nm with a spectral resolution of 200 MHz using sunlight as a light source. The measured $CO_2$ spectra exhibit frequency shifts by approximately 11 MHz over the course of the five-hour measurement, and we show that these shifts are caused by Doppler effects due to wind along the spectrometer line of sight. The measured frequency shifts are in excellent agreement with an atmospheric model, and we show that our measurements track the wind-induced Doppler shifts with a relative frequency precision of 100 kHz (15 cm/s), equivalent to a fractional precision of a few parts in $10^{10}$. These results demonstrate that frequency-comb-calibrated LHR enables precision velocimetry that can be of use in applications ranging from climate science to astronomy.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC