Optica Open
Browse

Probes for Ultrasensitive THz Nanoscopy

Download (5.58 kB)
preprint
posted on 2023-11-30, 19:48 authored by Curdin Maissen, Shu Chen, Elizaveta Nikulina, Alexander Govyadinov, Rainer Hillenbrand
Scattering-type scanning near-field microscopy (s-SNOM) at terahertz (THz) frequencies could become a highly valuable tool for studying a variety of phenomena of both fundamental and applied interest, including mobile carrier excitations or phase transitions in 2D materials or exotic conductors. Applications, however, are strongly challenged by the limited signal to noise ratio. One major reason is that standard atomic force microscope (AFM) tips, which have made s-SNOM a highly practical and rapidly emerging tool, provide weak scattering efficiencies at THz frequencies. Here we report a combined experimental and theoretical study of commercial and custom-made AFM tips of different apex diameter and length, in order to understand signal formation in THz s-SNOM and to provide insights for tip optimization. Contrary to common beliefs, we find that AFM tips with large (micrometer-scale) apex diameter can enhance s-SNOM signals by more than one order of magnitude, while still offering a spatial resolution of about 100 nm at a wavelength of 119 micron. On the other hand, exploiting the increase of s-SNOM signals with tip length, we succeeded in sub-15 nm resolved THz imaging employing a tungsten tip with 6 nm apex radius. We explain our findings and provide novel insights into s-SNOM via rigorous numerical modeling of the near-field scattering process. Our findings will be of critical importance for pushing THz nanoscopy to its ultimate limits regarding sensitivity and spatial resolution.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC