Optica Open
Browse

Probing Berry phase effect in topological surface states

Download (5.58 kB)
preprint
posted on 2024-04-11, 16:00 authored by Ya Bai, Yang Jiang, Wenyang Zheng, Jiayin Chen, Shuo Wang, Candong Liu, Ruxin Li, Peng Liu
We have observed the Berry phase effect associated with interband coherence in topological surface states (TSSs) using two-color high-harmonic spectroscopy. This Berry phase accumulates along the evolution path of strong field-driven election-hole quasiparticles in electronic bands with strong spin-orbit coupling. By introducing a secondary weak field, we perturb the evolution of Dirac fermions in TSSs and thus provide access to the Berry phase. We observe a significant shift in the oscillation phase of the even-order harmonics from the spectral interferogram. We reveal that such a modulation feature is linked to the geometric phase acquired in the nonperturbative dynamics of TSSs. Furthermore, we show that the overwhelming Berry phase effect can significantly deform the quantum paths of electron-hole pairs, thus enhancing the ability to harness electron spin using lightwaves in quantum materials with strong spin-orbit interactions.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC