Optica Open
Browse
arXiv.svg (5.58 kB)

Probing plasmon-NV$^0$ coupling at the nanometer scale with photons and fast electrons

Download (5.58 kB)
preprint
posted on 2023-11-30, 18:31 authored by H. Lourenço-Martins, M. Kociak, S. Meuret, F. Treussart, Yih Hong Lee, Xing Yi Ling, H. C. Chang, L. H. G. Tizei
The local density of optical states governs an emitters lifetime and quantum yield through the Purcell effect. It can be modified by a surface plasmon electromagnetic field, but such a field has a spatial extension limited to a few hundreds of nanometers, which complicates the use of optical methods to spatially probe the emitter-plasmon coupling. Here we show that a combination of electron-based imaging, spectroscopies and photon-based correlation spectroscopy enables measurement of the Purcell effect with nanometer and nanosecond spatio-temporal resolutions. Due to the large variability of radiative lifetimes of emitters embedded in nanoparticles with inhomogeneous sizes we relied on a statistical approach to unambiguously probe the coupling between nitrogen-vacancy centers (NV^0) in nanodiamonds and surface plasmons in silver nanocubes. We quantified the Purcell effect by measuring the NV^0 excited state lifetimes in a large number of either isolated nanodiamonds or nanodiamond-nanocube dimers and demonstrated a statistically significant lifetime reduction for dimers.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC