posted on 2023-11-30, 17:20authored byAlexander von Hoegen, Roman Mankowsky, Michael Fechner, Michael Först, Andrea Cavalleri
Femtosecond optical pulses at mid-infrared frequencies have opened up the nonlinear control of lattice vibrations in solids. So far, all applications have relied on second order phonon nonlinearities, which are dominant at field strengths near 1 MVcm-1. In this regime, nonlinear phononics can transiently change the average lattice structure, and with it the functionality of a material. Here, we achieve an order-of-magnitude increase in field strength, and explore higher-order lattice nonlinearities. We drive up to five phonon harmonics of the A1 mode in LiNbO3. Phase-sensitive measurements of atomic trajectories in this regime are used to experimentally reconstruct the interatomic potential and to benchmark ab-initio calculations for this material. Tomography of the Free Energy surface by high-order nonlinear phononics will impact many aspects of materials research, including the study of classical and quantum phase transitions.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.