Optica Open
Browse

Probing the ultrafast gain and refractive index dynamics of a VECSEL

Download (5.58 kB)
Version 2 2023-06-08, 12:46
Version 1 2023-01-11, 23:08
preprint
posted on 2023-06-08, 12:46 authored by Christian Kriso, Tim Bergmeier, Nathan Giannini, Alexander Albrecht, Mansoor Sheik-Bahae, Sepehr Benis, Sanaz Faryadras, Eric Van Stryland, David Hagan, Martin Koch, Gerson Mette, Arash Rahimi-Iman
Typically, strong gain saturation and gain dynamics play a crucial role in semiconductor laser mode-locking. While there have been several investigations of the ultrafast gain dynamics in vertical-external-cavity surface-emitting lasers (VECSELs), little is known about the associated refractive index changes. Yet, such refractive index changes do not only have a profound impact on the pulse formation process leading to self-phase modulation, which needs to be compensated by dispersion, but they are also of particular relevance for assessing the feasibility of Kerr-lens mode-locking of VECSELs. Here, we measure both refractive index as well as gain dynamics of a VECSEL chip using the ultrafast beam deflection method. We find that, in contrast to the gain dynamics, the refractive index dynamics is dominated by an instantaneous ($\sim$100~fs) and a very slow component ($\sim$100~ps). The time-resolved measurement of nonlinear refraction allows us to predict a pulse-length dependent, effective nonlinear refractive index $n_{2,eff}$, which is shown to be negative and in the order of $10^{-16}$ $m^2/W$ for short pulse lengths ($\sim$100~fs) . It becomes positive for large excitation fluences and large pulse lengths (few ps). These results agree with some previous reports of self-mode-locked VECSELs for which the cavity design and pulse properties determine sign and strength of the nonlinear refractive index when assuming Kerr-lens mode-locking.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC