Optica Open
Browse

Programmable k-local Ising Machines and all-optical Kolmogorov-Arnold Networks on Photonic Platforms

Download (5.58 kB)
preprint
posted on 2025-08-27, 16:00 authored by Nikita Stroev, Natalia G. Berloff
Photonic computing promises energy-efficient acceleration for optimization and learning, yet discrete combinatorial search and continuous function approximation have largely required distinct devices and control stacks. Here we unify k-local Ising optimization and optical Kolmogorov-Arnold network (KAN) learning on a single photonic platform, establishing a critical convergence point in optical computing. We introduce an SLM-centric primitive that realizes, in one stroke, all-optical k-local Ising interactions and fully optical KAN layers. The key idea is to convert the structural nonlinearity of a nominally linear scatterer into a per-window computational resource by adding a single relay pass through the same spatial light modulator: a folded 4f relay re-images the first Fourier plane onto the SLM so that each selected clique or channel occupies a disjoint window with its own second pass phase patch. Propagation remains linear in the optical field, yet the measured intensity in each window becomes a freely programmable polynomial of the clique sum or projection amplitude. This yields native, per clique k-local couplings without nonlinear media and, in parallel, the many independent univariate nonlinearities required by KAN layers, all trainable with in-situ physical gradients using two frames (forward and adjoint). We outline implementations on spatial photonic Ising machines, injection-locked vertical cavity surface emitting laser (VCSEL) arrays, and Microsoft analog optical computers; in all cases the hardware change is one extra lens and a fold (or an on-chip 4f loop), enabling a minimal overhead, massively parallel route to high-order Ising optimization and trainable, all-optical KAN processing on one platform.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC