Optica Open
Browse

Stimulated emission does not radiate in a pure dipole pattern

Download (5.58 kB)
Version 2 2024-03-09, 17:00
Version 1 2023-12-07, 17:00
preprint
posted on 2024-03-09, 17:00 authored by Andrew E. S. Barentine, W. E. Moerner
Stimulated Emission (StE) remains relatively unused as an image-forming signal despite having potential advantages over fluorescence in speed, coherence, and ultimately resolution. Several ideas for the radiation pattern and directionality of StE remain prevalent, namely whether a single molecule would radiate StE itself in a pure dipole pattern, or whether its emission direction depends on the driving field. Previous StE imaging has been carried out in transmission, which would collect signal either way. Here, we introduce the StE driving field (the probe) at an angle, using total internal reflection to avoid incident probe light and its specular reflections in our detection path. In this non-collinear detection configuration which also collects some fluorescence from the sample, we observe fluorescence depletion even in the spectral window where an increase in detected signal from StE would be expected if StE radiated like a simple classical dipole. Because simultaneous direct measurement of the fluorescence represents a calibration of the potential size of StE were it spatially patterned like a classical dipole emitter, our study clarifies a critical characteristic of StE for optimal microscope design, optical cooling, and applications using small arrays of emitters.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC