posted on 2023-11-30, 20:20authored byGui-hua Chen, Mu-ying Wu, Yong-qing Li
Laser has become a powerful tool to manipulate micro-particles and atoms by radiation pressure force or photophoretic force, but optical manipulation is less noticeable for large objects. Optically-induced negative forces have been proposed and demonstrated to pull microscopic objects for a long distance, but are hardly seen for macroscopic objects. Here, we report the direct observation of unusual light-induced attractive forces that allow pulling and lifting centimeter-sized light-absorbing objects off the ground by a light beam. This negative force is based on the radiometric effect on a curved vane and its magnitude and temporal responses are directly measured with a pendulum. This large force (\~4.4 {\mu}N) allows overcoming the gravitational force and rotating a motor with four-curved vanes (up to 600 rpm). Optical pulling of macroscopic objects may find nontrivial applications for solar radiation-powered near-space propulsion systems and for understanding the mechanisms of negative photophoretic forces.