Optica Open
Browse
arXiv.svg (5.58 kB)

Purcell Effect in the Stimulated and Spontaneous Emission Rates of Nanoscale Semiconductor Lasers

Download (5.58 kB)
preprint
posted on 2023-11-30, 05:08 authored by Bruno Romeira, Andrea Fiore
Nanoscale semiconductor lasers have been developed recently using either metal, metallo-dielectric or photonic crystal nanocavities. While the technology of nanolasers is steadily being deployed, their expected performance for on-chip optical interconnects is still largely unknown due to a limited understanding of some of their key features. Specifically, as the cavity size is reduced with respect to the emission wavelength, the stimulated and the spontaneous emission rates are modified, which is known as the Purcell effect in the context of cavity quantum electrodynamics. This effect is expected to have a major impact in the 'threshold-less' behavior of nanolasers and in their modulation speed, but its role is poorly understood in practical laser structures, characterized by significant homogeneous and inhomogeneous broadening and by a complex spatial distribution of the active material and cavity field. In this work, we investigate the role of Purcell effect in the stimulated and spontaneous emission rates of semiconductor lasers taking into account the carriers' spatial distribution in the volume of the active region over a wide range of cavity dimensions and emitter/cavity linewidths, enabling the detailed modeling of the static and dynamic characteristics of either micro- or nano-scale lasers using single-mode rate-equations analysis. The ultimate limits of scaling down these nanoscale light sources in terms of Purcell enhancement and modulation speed are also discussed showing that the ultrafast modulation properties predicted in nanolasers are a direct consequence of the enhancement of the stimulated emission rate via reduction of the mode volume.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC