Optica Open
Browse

Pyramid diffractive optical networks for unidirectional magnification and demagnification

Download (5.58 kB)
preprint
posted on 2023-08-31, 16:00 authored by Bijie Bai, Xilin Yang, Tianyi Gan, Jingxi Li, Deniz Mengu, Mona Jarrahi, Aydogan Ozcan
Diffractive deep neural networks (D2NNs) are composed of successive transmissive layers optimized using supervised deep learning to all-optically implement various computational tasks between an input and output field-of-view (FOV). Here, we present a pyramid-structured diffractive optical network design (which we term P-D2NN), optimized specifically for unidirectional image magnification and demagnification. In this P-D2NN design, the diffractive layers are pyramidally scaled in alignment with the direction of the image magnification or demagnification. Our analyses revealed the efficacy of this P-D2NN design in unidirectional image magnification and demagnification tasks, producing high-fidelity magnified or demagnified images in only one direction, while inhibiting the image formation in the opposite direction - confirming the desired unidirectional imaging operation. Compared to the conventional D2NN designs with uniform-sized successive diffractive layers, P-D2NN design achieves similar performance in unidirectional magnification tasks using only half of the diffractive degrees of freedom within the optical processor volume. Furthermore, it maintains its unidirectional image magnification/demagnification functionality across a large band of illumination wavelengths despite being trained with a single illumination wavelength. With this pyramidal architecture, we also designed a wavelength-multiplexed diffractive network, where a unidirectional magnifier and a unidirectional demagnifier operate simultaneously in opposite directions, at two distinct illumination wavelengths. The efficacy of the P-D2NN architecture was also validated experimentally using monochromatic terahertz illumination, successfully matching our numerical simulations. P-D2NN offers a physics-inspired strategy for designing task-specific visual processors.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC