Optica Open
Browse

Quantum-Enhanced Polarimetric Imaging

Download (5.58 kB)
preprint
posted on 2024-08-10, 16:00 authored by Meng-Yu Xie, Su-Jian Niu, Zhao-Qi-Zhi Han, Yin-Hai Li, Ren-Hui Chen, Xiao-Hua Wang, Ming-Yuan Gao, Li Chen, Yue-Wei Song, Zhi-Yuan Zhou, Bao-Sen Shi
Polarimetric imaging, a technique that captures the invisible polarization-related properties of given materials, has broad applications from fundamental physics to advanced fields such as target recognition, stress detection, biomedical diagnosis and remote sensing. The introduction of quantum sources into classical imaging systems has demonstrated distinct advantages, yet few studies have explored their combination with polarimetric imaging. In this study, we present a quantum polarimetric imaging system that integrates polarization-entangled photon pairs into a polarizer-sample-compensator-analyzer (PSRA)-type polarimeter. Our system visualizes the birefringence properties of a periodical-distributed anisotropic material under decreasing illumination levels and diverse disturbing light sources. Compared to the classical system, the quantum approach reveals the superior sensitivity and robustness in low-light conditions, particularly useful in biomedical studies where the low illumination and non-destructive detection are urgently needed. The study also highlights the nonlocality of entangled photons in birefringence measurement, indicating the potential of quantum polarimetric system in the remote sensing domain.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC