posted on 2023-01-10, 02:55authored byAlexandre Belsley
Absorption spectroscopy is a widely used technique that permits the detection and characterization of gas species at low concentrations. We propose a sensing strategy combining the advantages of frequency modulation spectroscopy with the reduced noise properties accessible by squeezing the probe state. A homodyne detection scheme allows the simultaneous measurement of the absorption at multiple frequencies and is robust against dispersion across the absorption profile. We predict a significant enhancement of the signal-to-noise ratio that scales exponentially with the squeezing factor. An order of magnitude improvement beyond the standard quantum limit is possible with state-of-the-art squeezing levels facilitating high precision gas sensing.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.